Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods ; 223: 35-44, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228195

RESUMO

A highly efficient sensor has been successfully developed using quinoline-based BODIPY compounds (8-quinoline-4,4-difluoro-4-boro-3a, 4a-diazaindacene (C1) and 7-hydroxy-8-quinoline-4,4-difluoro-4-boro-3a, 4a-diazindacene (C2) to detect Hg2+ ions. The sensor C1 exhibits remarkable selectivity in detecting Hg2+ with a limit of detection 3.06 × 10-8 mol/L. The developed chemical sensors have shown stability, cost-effectiveness, ease of preparation, and remarkable selectivity towards Hg2+ ions compared to other commonly occurring metal ions. The total recovery of the sensor C1 can be achieved by using a 0.1 mol/L solution of KI. The proposed sensor C1 has been applied to determine Hg2+ in tap and distilled water, yielding excellent results. In addition, the binding mode of C1-Hg2+ and C2-Hg2+ complexes was a 1:1 ratio confirmed by mass spectra, Job's plot, and DFT study. Moreover, the sensor C1 successfully applied for the biological studies results in negligible cytotoxicity, which demonstrates it can be used to determine Hg2+ in HT22 cells.


Assuntos
Compostos de Boro , Mercúrio , Quinolinas , Corantes , Íons
2.
Methods ; 223: 26-34, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266951

RESUMO

The fabrication of red fluorescent hybrid mesoporous silica-based nanosensor materials has promised the bioimaging and selective detection of toxic pollutants in aqueous solutions. In this study, we present a hybrid mesoporous silica nanosensor in which the propidium iodide (PI) was used to conveniently integrate into the mesopore walls using bis(trimethoxysilylpropyl silane) precursors. Various characterization techniques including X-ray diffraction (XRD), Fourier-transform infrared (FTIR), N2 adsorption-desorption, zeta potential, particle size analysis, thermogravimetric, and UV-visible analysis were used to analyze the prepared materials. The prepared PI integrated mesoporous silica nanoparticles (PI-MSNs) selective metal ion sensing capabilities were tested with a variety of heavy metal ions (100 mM), including Ni2+, Cd2+, Co2+, Zn2+, Cr3+, Cu2+, Al3+, Mg2+, Hg2+ and Fe3+ ions. Among the investigated metal ions, the prepared PI-MSNs demonstrated selective monitoring of Fe3+ ions with a significant visible colorimetric pink color change into orange and quenching of pink fluorescence in an aqueous suspension. The selective sensing behavior of PI-MSNs might be due to the interaction of Fe3+ ions with the integrated PI functional fluorophore present in the mesopore walls. Therefore, we emphasize that the prepared PI-MSNs could be efficient for selective monitoring of Fe3+ ions in an aqueous solution and in the biological cellular microenvironment.


Assuntos
Metais Pesados , Nanopartículas , Colorimetria , Dióxido de Silício , Metais Pesados/análise , Íons
3.
Environ Res ; 235: 116671, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454804

RESUMO

The prime aim of this research is to discover new, eco-friendly approaches to reducing agents for manufacturing silver nanoparticles (AgNPs) from fresh fruiting bodies of the edible mushroom Hypsizygus ulmarius (Hu). The confirmation of Hu-mediated AgNPs has been characterized by UV visible spectroscopy, XRD, FTIR, SEM with EDX, HRTEM, AFM, PSA, Zeta poetical and GCMS analysis. The absorption peak of Hu-AgNPs at 430 nm has been confirmed by UV-visible spectroscopy analysis. The findings of the particle size study show that AgNPs have a size distribution with an average of 20 nm. The Zeta potential of NPs reveals a significant build-up of negative charges on their surface. The additional hydrate layers that occurred at the surface of AgNPs are shown in the HR-TEM morphology images. The antibacterial activity results showed that Hu-AgNPs were highly effective against both bacterial pathogens, with gram-positive (+) and gram-negative (-) pathogens having a moderate inhibition effect on K. pneumoniae (5.3 ± 0.3 mm), E. coli (5.3 ± 0.1), and S. aureus (5.2 ± 0.3 mm). Hu-AgNPs (IC50 of 50.78 µg/mL) were found to have dose-dependent cytotoxic action against human lung cancer cell lines (A549). Inhibited cell viability by up to 64.31% after 24 h of treatment. To the best of our knowledge, this is the hand information on the myco-synthesis of AgNPs from the H. ulmarius mushroom extract and the results suggest that it can an excellent source for developing a multipurpose and eco-friendly nano product in future.


Assuntos
Agaricales , Anti-Infecciosos , Nanopartículas Metálicas , Humanos , Prata/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Staphylococcus aureus , Escherichia coli , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...